Envisioning the use of CO₂

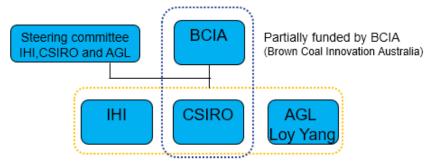
- Progress from a Latrobe Valley perspective

Assoc. Prof. Vince Verheyen

ANY LARGE SCALE CO₂ RESOURCE WILL NEED:

- CAPTURE AND CONVERSION
- REUSE OPTIONS

NEED FOR TRANSFERABLE KNOWLEDGE FROM POWER TO OTHER OPERATIONS


THE VALLEY'S LARGE & DIVERSE CARBON RESOURCES REQUIRE A FOCUS ON NICHE CO₂ APPLICATIONS AND INNOVATION THAT ARE A FIT FOR THIS REGION

Current Local CO₂ Capture R&D

PICA project

PICA (Post-combustion carbon capture, IHI, CSIRO, AGL)

IHI Corporation

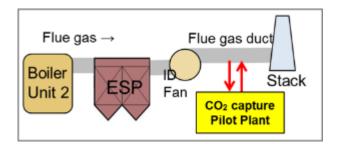
 Design, construction, operation and evaluation of the PCC pilot plant (IHI system)

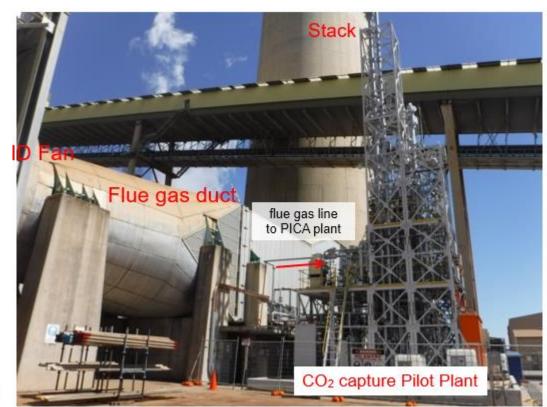
AGL Loy Yang Pty Ltd

- Operator of Loy Yang A Power Station using brown coal
- Host of PCC pilot plant in this power plant.

CSIRO (the Commonwealth Scientific and Industrial Research Organisation)

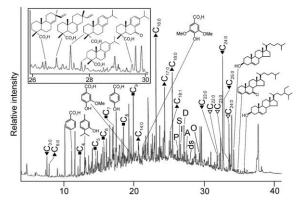
Supporting design, site preparation, operation and evaluation of the pilot plant.




Loy Yang A Power Station & Loy Yang coal mine

Current Local CO₂ Capture R&D

PICA Pilot Plant@ Loy Yang A


POWER INDUSTRY ACTS AS AN ENABLER

DEVELOPING TRANSFERABLE KNOWLEDGE ON CAPTURE TECHNOLOGY THAT'S APPLICABLE TO OTHER VALLEY OPERATIONS

CCS RESEARCH LABORATORY

Tracking molecules to understand:

- 1. CO₂ capture system degradation
- 2. Turning carbon into products

ANY LARGE SCALE CO₂ RESOURCE WILL NEED:

REUSE OPTIONS

MIMICKING & WORKING WITH NATURE

THE VALLEY'S LARGE & DIVERSE CARBON RESOURCES REQUIRE A FOCUS ON NICHE CO₂ APPLICATIONS AND INNOVATION THAT ARE A FIT FOR THIS REGION

Evaluating innovative local CO₂ utilisation opportunities

Typical CO₂ utilisation/conversion routes

- Photo/thermo/electro catalytic
- Energy intensive and expensive

Taking cue from nature for CO₂ conversion into products

 We are designing a biorefinery concept that mimics nature and generates products from CO₂ and bio-wastes

- Trees, forest/wood waste
- Horticulture, agriculture/waste
- Dairy, abattoir
- Municipal / Industrial wastes

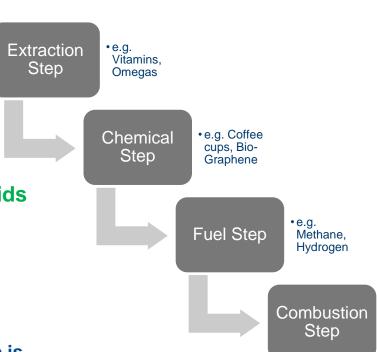
CO₂ Utilisation in our Biorefinery Concept

Drivers: "Carbon Negative", Multiple Products and "Zero Waste"

Step 1: Using Supercritical CO₂ for Extraction

Vitamins, fatty acids, oils, food flavours, waxes, fragrances

Step 2: Chemical Production


Microbes convert CO₂+Biomass into acetic & succinic acids

Step 3: Fuel Production

Leftover biomass is converted into methane

Step 4: Combustion/Pyrolysis/Gasification

 Methane production leaves some undigested biomass which is converted into electricity & biochar

Biodegradable Plastics from Succinic Acid

Incorporate CO₂ into biodegradable plastics

- Coffee Cups, grocery/garbage bags, packaging and a range of other plastic products
- Insulation tiles in construction
 - > CO₂ lock-in for decades

Plastic Waste is a Big Problem

Bio-Degradable Plastic is a Solution

Only degrades once buried in soil

Converts into CO₂ and H₂O

Or back to the biorefinery for recycling

This locks-in CO₂ in a continuous cycle

Bio-Degradable Plastic Products

Bio-Degradable Coffee Cup

Hi-Tech Products from Acetic Acid

Bio-Graphene

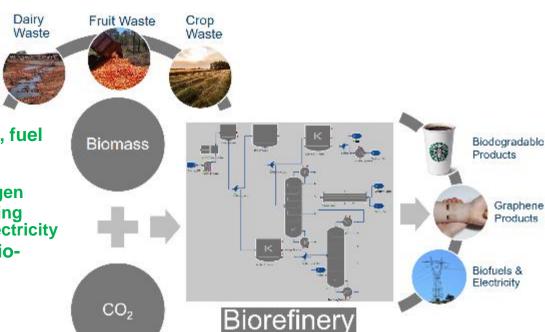
 Use CO₂ to convert Acetic Acid into a chemical precursor for Bio-Graphene

Transparent Bio-Plastic from Acetic Acid

 Solar panels, greenhouses, bio-medical, 3D-printing

Bio-Fuels from Acetic Acid

- Dimethyl Ether
- Ethanol


Biorefinery Simulation Results

3500 tonnes of biomass produces

- 950t succinic acid
 - Biodegradable products
- 420t acetic acid
 - Integrate with electrolytic cell, fuel cell, metal hydride hydrogen storage to produce
 - > 200t ethanol + 8.5t Hydrogen
 - Hydrogen is produced using 1700MWh surplus grid electricity
 - OR convert acetic acid into Bio-Graphene/transparent plastic
- 1500t CO₂ removed from atmosphere

Model suitable for feedstock size from 10 to 3500 tonnes per day

Competing models also investigated

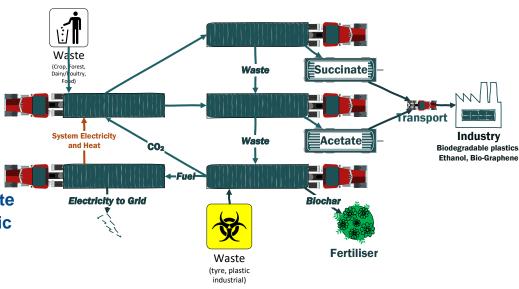
APPLICATIONS AND INNOVATION THAT ARE A FIT FOR THIS REGION

MINIATURISATION DRIVING MOBILITY

Mobile Biorefinery

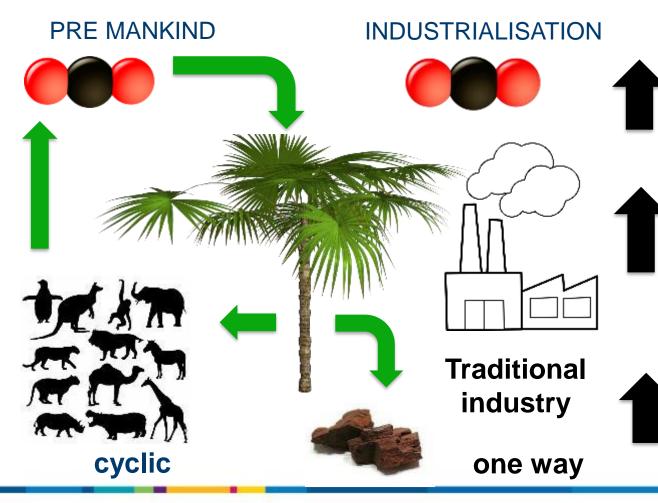
Transporting Gippsland Biomass/Wastes is expensive! Take the biorefinery to the source

Mobile and Modular (~5 semi trailers)

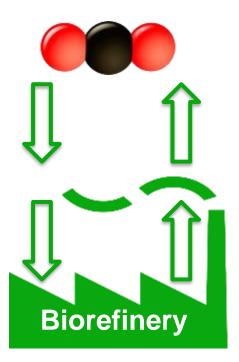

- Extract oils, pigments, vitamins,
- Convert biomass into value added chemicals and animal feed
- Generate onsite electricity from leftovers
- Leave biochar to improve soil

Feedstock

- Dairy, horticulture, wood/forest waste
- Also suitable for tyres, plastics, toxic wastes


Outcomes

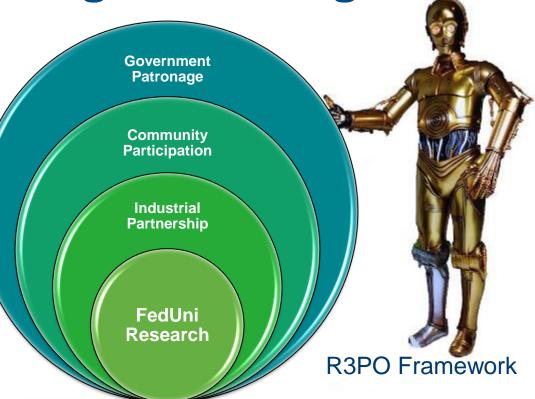
- Advanced engineering / design
- High value niche manufacturing



SUSTAINABLE MANUFACTURING

cyclic

Towards Bio-refining in our Region


Research, Partnership, Participation, Patronage Order (R3PO) framework guiding biorefinery research from Lab to Industry

Fulfilling local industry requirements

• E.g. dairy, wood, horticulture

- Capitalising on local resources
 - Power industry human resource
 - Electricity grid, peaking stations
- B2B coordination for final products
 - E.g. bio-degradable grocery bags, coffee-cups, solar panel coats, greenhouses, defence, aerospace
- Creating transferrable knowledge and products for other areas

A unique win-win situation: job creation, biodegradable plastic/power generation, CO₂ emissions reduction

ACKNOWLEDGEMENTS

